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Abstract—Dissimilatory metal-reducing bacteria (DMRB) can utilize Fe(III) associated with aqueous com-
plexes or solid phases, such as oxide and oxyhydroxide minerals, as a terminal electron acceptor coupled to
the oxidation of H2 or organic substrates. These bacteria are also capable of reducing other metal ions
including Mn(IV), Cr(VI), and U(VI), a process that has a pronounced effect on their solubility and overall
geochemical behavior. In spite of considerable study on an individual basis, the biogeochemical behavior of
multiple metals subject to microbial reduction is poorly understood. To probe these complex processes, the
reduction of U(VI) by the subsurface bacterium,Shewanella putrefaciensCN32, was investigated in the
presence of goethite under conditions where the aqueous composition was controlled to vary U speciation and
solubility. Uranium(VI), as the carbonate complexes UO2(CO3)3(aq)

42 and UO2(CO3)2(aq)
22 , was reduced by the

bacteria to U(IV) with or without goethite [a-FeOOH(s)] present. Uranium(VI) in 1,4-piperazinediethhane-
sulfonic acid (PIPES) buffer that was estimated to be present predominantly as the U(VI) mineral metascho-
epite [UO3 z 2H2O(s)], was also reduced by the bacteria with or without goethite. In contrast, only;30% of
the U(VI) associated with a synthetic metaschoepite was reduced by the organism in the presence of goethite
with 1 mM lactate as the electron donor. This may have been due to the formation of a layer of UO2(s) or
Fe(OH)3(s) on the surface of the metaschoepite that physically obstructed further bioreduction. Increasing the
lactate to a non-limiting concentration (10 mM) increased the reduction of U(VI) from metaschoepite to
greater than 80% indicating that the hypothesized surface-veneering effect was electron donor dependent.
Uranium(VI) was also reduced by bacterially reduced anthraquinone-2,6-disulfonate (AQDS) in the absence
of cells, and by Fe(II) sorbed to goethite in abiotic control experiments. In the absence of goethite, uraninite
was a major product of direct microbial reduction and reduction by AH2DS. These results indicate that
DMRB, via a combination of direct enzymatic or indirect mechanisms, can reduce U(VI) to insoluble U(IV)
in the presence of solid Fe oxides.Copyright © 2000 Elsevier Science Ltd

1. INTRODUCTION

A variety of anaerobic bacteria can catalyze the reduction of
soluble species of U(VI) to insoluble U(IV) forms. Some of
these microorganisms, including those capable of S (Lovley et
al., 1993) and Fe (Lovley et al., 1991) respiration, do so by a
direct enzymatic process coupled to the oxidation of organic
compounds or H2 (Gorby and Lovley, 1992; Lovley and Phil-
lips, 1992b). The product of this microbial reduction reaction is
typically fine-grained uraninite [UO2(s)] (Gorby and Lovley,
1992; Lovley and Phillips, 1992b). The formation of some
uranium ore deposits is believed to involve direct microbial
reduction of U(VI) (Lovley et al., 1991; Mohagheghi et al.,
1985), as opposed to abiotic reduction by reduced species such
as sulfide. Anderson, (1987) reported that U(VI) is not reduced
to U(IV) by H2S in anoxic seawater but rather diffuses into
sediments where it is reduced to U(IV), possibly by anaerobic
bacteria (McKee and Todd, 1993).

The purpose of this research was to investigate the reduction
of U(VI), either as an aqueous species [UO2(CO3)3(aq)

42 ] or as
metaschoepite [UO3 z 2H2O(s)], by the dissimilatory metal-re-
ducing bacteriumS. putrefaciensin the absence and presence of

an Fe(III) oxide as an alternative electron acceptor during the
metabolism of lactate. The influence of anthraquinone-2,6-
disulfonate (AQDS) as a humic acid analog and electron shuttle
(Lovley et al., 1998) on the microbial reduction process was
investigated, as well as the potential for microbially generated
reduced AQDS (AH2DS) and Fe(II) to directly reduce U(VI).
Soluble and extractable forms of U(VI) were measured and U
X-ray absorption near edge structure (XANES) spectroscopy
was used to determine the oxidation state of U associated with
the solid phase and to quantify microbial reduction of U in
complex mineral suspensions.

In addition to bacteria having an important role in the bio-
geochemical cycling of U, microbial processes can remove and
concentrate U from contaminated ground and surface waters
(Lovley and Phillips, 1992a) or from contaminated soil wash
through reductive precipitation (Phillips et al., 1995b). Reme-
diation of contaminated groundwater via wells and treatment ex
situ is a relatively inefficient and costly process, while micro-
bial U(VI) reduction can potentially be applied for the removal
of U from solution in situ (Lovley, 1995).

Some DMRB can reduce solid phase Fe(III) oxides and
oxyhydroxides including poorly crystalline phases such as fer-
rihydrite and crystalline phases such as goethite (Roden and
Zachara, 1996), hematite (Zachara et al., 1998), and magnetite
(Kostka and Nealson, 1995; Dong et al., 1999).S. putrefaciens
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and S. algaespecies appear to be particularly effective at
reducing crystalline Fe(III) oxide phases although, to our
knowledge, a systematic analysis of the ability of different
DMRB to reduce different Fe(III) oxide minerals has not been
undertaken. Fe(III) oxides are ubiquitous in nature and, in some
aquifer sediments, they comprise the largest mass of oxidant
(e.g., electron acceptor) for microbially catalyzed oxidation of
organic compounds (Heron et al., 1994b). Hence, in Fe(III)
oxide containing subsurface sediments with soluble U(VI),
DMRB are presented with multiple electron acceptors that can
be potentially linked to respiration. The actual pe where the
valence transformations occur is strongly dependent on pH,
reactant concentrations, aqueous speciation, and solid-phase
distribution of the elements, and chemical potentials of reac-
tants and products formed. In oxidized soils and sediments at
circumneutral pH, Fe(III) is typically present as insoluble (hy-
dr)oxides, while a significant fraction of the total U(VI) can be
soluble carbonate or hydroxo complexes. From a thermody-
namic standpoint (Francis et al., 1994) and because of much
greater solubility, U(VI) should be reduced preferentially to
Fe(III), which is poorly soluble in the oxidized form. However,
differences in bacterial enzyme specificity and kinetics make it
difficult to predict the sequence of reduction. Also, on a mass
basis, Fe(III) is typically present in much higher concentrations
than U. Therefore, it is difficult to predict, a priori, the fate of
U(VI) in Fe(III) oxide containing sediments as microbial metal
reduction proceeds.

Uranium may exist in contaminated soils in a variety of
valence states (predominantly IV and VI) reflecting the nature
of the source term and weathering extent (Hunter and Bertsch,
1998; Morris et al., 1996). Uranium(VI) is the most stable
valence form under oxidizing geochemical conditions (Grenthe
et al., 1992a; Langmuir, 1978). While U(VI) precipitates in
sparingly soluble mineral phases including metaschoepite
[UO3 z 2H2O(s)] and various phosphates and silicates (Grenthe
et al., 1995; Langmuir, 1978), UO2(aq)

21 forms a series of strong
aqueous complexes with CO3

22 [e.g., UO2CO3(aq)
o ,

UO2(CO3)2(aq)
22 , UO2(CO3)(aq)

42 ] that greatly enhance U(VI) sol-
ubility in carbonate containing waters at circumneutral pH and
above. Uranium(VI)–carbonate aqueous complexes are neutral
or anionic in charge, and poorly reactive with mineral surfaces
such as Fe(III) and Al oxyhydroxides (Duff and Amrhein,
1996; Hsi and Langmuir, 1985; Waite et al., 1994) and clays
that typically control metal ion migration in soil and ground-
water by adsorption reactions. Remediation technologies for
U(VI) contamination often involve reduction of mobile U(VI)
aqueous complexes to insoluble U(IV) precipitates (Fiedor et
al., 1998; Gu et al., 1998), where carbonate complexation has
minimal effect on solubility (Casas et al., 1998). To be effective
in the long term, however, remediation techniques for U(VI)
must target both mobile aqueous species that are groundwater
contaminants, as well as U(VI) precipitates that may be long
term sources.

2. EXPERIMENTAL PROCEDURES

2.1. Bacteria, Media, and Minerals

S. putrefaciensstrain CN32 was provided courtesy of Dr. David
Boone (Subsurface Microbial Culture Collection, Portland State Uni-
versity, Portland, OR, USA). Strain CN32 was isolated from a subsur-

face core sample (250 m beneath the surface) from the Morrison
Formation, a formation mined extensively for uranium, during drilling
of a shale–sandstone sequence in northwestern New Mexico (Liu et al.,
submitted). CN32 was routinely cultured aerobically in tryptic soy
broth (TSB), 30 g/L (Difco Laboratories, Detroit, MI, USA), and stock
cultures were maintained by freezing in 40% glycerol at280°C.

Solutions were buffered (pH; 7) with either NaHCO3 or 1,4-
piperazinediethanesulfonic acid (PIPES), at 30 mM. Sodium lactate
was added as the electron donor and, in select treatments, AQDS
(Sigma, St. Louis, MO, USA) was added separately. Lactate was used
at 1 mM in most experiments and 10 mM in several cases. Medium was
dispensed into pressure tubes, purged with N2:CO2 (80:20) for
NaHCO3-buffered medium or N2 for PIPES-buffered medium and
sealed with thick butyl rubber stoppers.

CN32 cells were harvested at mid to late log phase by centrifugation
from TSB cultures, washed with buffer to remove residual medium,
resuspended in NaHCO3 or PIPES buffer, and purged. Cells were
added to buffers to obtain a final concentration of 2 to 43 108

cells/mL.
A medium surface area goethite (52.3 m2/g) was prepared by hy-

drolysis of Fe(III) solutions and aging at elevated temperatures accord-
ing to Schwertmann and Cornell (1991). The precipitates were ex-
tracted three times with acidified hydroxylamine hydrochloride to
remove any residual ferrihydrite, washed repeatedly to remove extrac-
tants, extensively dialyzed against deionized distilled H2O and lyoph-
ilized. Metaschoepite [UO3 z 2H2O(s)] was synthesized by hydrolysis of
a 0.01 mol/L UO2(NO3)2 z 6H2O solution by using methods described
by Sowder et al. (1996) and characterized by XRD and high resolution
transmission electron microscopy (HRTEM). Metaschoepite was main-
tained as an aqueous suspension in 10 mM PIPES, pH 7, until used.

2.2. Bacterial Reduction Experiments

The ability of S. putrefaciensstrain CN32 to reduce U(VI), as U
acetate or as metaschoepite, was evaluated in the presence or absence
of 50 mM goethite. Goethite slurries were made to 250 mM in water
and sonicated for 1 h to disperse the lyophilized particles. In a typical
experiment with 10 mL final volume, 2 mL of goethite slurry was
added to replicate pressure tubes, followed by 4.5 mL of 60 mM PIPES
or NaHCO3 buffer, 0.1 mL of 100 mM lactate, and 1.4 mL of deionized
water. Tubes were purged with N2 (PIPES) or N2(80):CO2(20)
(NaHCO3) and sealed with thick butyl rubber stoppers. One mL of
CN32 cell suspension was added from a freshly washed culture of
between 2 and 43 109 cells/mL in either 30 mM PIPES or NaHCO3

by using a needle and syringe purged with N2 or N2:CO2. One mL of
anaerobic 10 mM uranyl acetate was added last using a purged needle
and syringe. All bacterial experiments were incubated at 30°C with
gyratory shaking at 100 rpm for 7 to 14 days, while cells were
metabolically active. Experiments with synthetic metaschoepite were
conducted in PIPES buffer, pH 7. As the 10 mM metaschoepite stock
was maintained in 30 mM PIPES, only 4 mL of 60 mM PIPES was
added to tubes that received 1 mL of 10 mM metaschoepite.

2.3. Abiotic Experiments with AH2DS and Fe(II)

For abiotic U(VI) reduction experiments, AH2DS was produced via
bacterially catalyzed reduction of AQDS by incubatingS. putrefaciens
CN32 with H2 as the electron donor in the appropriate buffer. Quan-
titative reduction was typically achieved within 24 h. After AQDS was
reduced, as measured by absorbance at 405 nm (Fredrickson et al.,
1998), cells were removed by filtration (0.2mm) in an O2-free glove-
bag, the solution was purged, and uranyl acetate added to achieve the
desired final concentration. Solutions were equilibrated at room tem-
perature in pressure tubes sealed with thick butyl rubber stoppers.

Fe(II) goethite slurries were prepared by adding 0.9 g of the synthetic
goethite to 20 mL of 60 mM PIPES, pH 7. The pH was adjusted to;8
with 10 N NaOH. The slurry was sonicated for 1 h and then purged
with N2. The slurry was equilibrated in an anaerobic glovebag. After
24 h, 4.5 mL of a 20 mM, FeCl2 solution was added to the slurry,
followed by 15.5 mL of O2-free deionized water. The pH of this
suspension was 7.5. The Fe(II) was equilibrated with the goethite
overnight. Two mL of this slurry was added to the pressure tubes to
obtain a final Fe(II) concentration of 0.45 mM and final goethite
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concentration of 50 mM. The concentration of dissolved Fe(II) after
equilibration was 20.3 (67) mM. The total Fe(II) concentration in this
suspension, as determined by extraction with 0.5 N HCl, was 384
(614)mM. After correcting for controls and Fe(II)(aq), the sorbed Fe(II)
was determined to be 61.5mmol/g (1.18mmol/m2) goethite. Suspen-
sions of goethite with sorbed Fe(II) were equilibrated with uranyl
acetate as described above for AH2DS. For consistency with biotic
experiments, abiotic experiments were also equilibrated for 7 to 14 days.

2.4. Analyses

At select timepoints, replicate tubes were transferred to an anaerobic
(Ar:H2, 95:5) glovebag (Coy Laboratory Products, Ann Arbor, MI,
USA) and 1 mL of suspension was sampled with a syringe and filtered
through a 0.2mm polycarbonate or a 10 K mol. wt. cutoff (Pall Filtron,
Northborough, MA, USA) filter. This fraction was considered the
soluble fraction and analyzed for U(VI), where appropriate. To analyze
for solids-associated U(VI), suspensions were extracted with either 100
mM NaHCO3, pH 8.4 (Phillips et al., 1995a), or 0.5 mol/L (NH4)2CO3,
pH 9 (Duff et al., 1997a,b). The pH was measured under anaerobic
conditions by using a Ross combination electrode. HCl-extractable
Fe(II) was obtained by adding 1 mL of suspension to 1 mL of 1 N
Ultrex HCl, mixing, and allowed to stand for at least 1 h before
analyzing for Fe(II). This extraction is termed 0.5 N HCl, and has been
shown to be an effective extractant of total Fe(II) from microbially
reduced suspensions of crystalline Fe oxides (Zachara et al., 1998).

Fe(II) in acidified filtrates (0.2mm) or extracts was determined by
using the ferrozine assay (Stookey, 1970). Uranium was analyzed by
using a kinetic phosphorescence analyzer (Brina and Miller, 1992)
(KPA-10, Chemchek, Richland, WA, USA), specific for U(VI). Lactate
concentrations were determined using an enzymatic assay (Sigma, St.
Louis, MO, USA).

2.5. X-ray Diffraction

Settled mineral residue from the reduction experiments was removed
from the pressure tubes to minimize liquid transfer and dried under
anaerobic conditions; the dried solid was smeared on a glass slide for
X-ray diffraction analysis. Slides were kept under an anoxic atmo-
sphere until analysis. The X-ray diffraction (XRD) apparatus consisted
of two Philips wide-range vertical goniometers with incident-beam 2-u
compensating slits, soller slits, fixed 2-mm receiving slits, diffracted
beam graphite monochromators, and scintillation counter detectors.
The X-ray source was a Philips XRG3100 X-ray generator operating a
fixed-anode, long-fine-focus Cu tube at 45 Kv, 40 mA (1800 W).
Instrument control was by means of Databox NIMBIM modules (Ma-
terials Data, Livermore, CA, USA).

2.6. Uranium X-ray Absorption Near Edge Structure
Spectroscopy

The suspensions, in triplicate, were analyzed for U oxidation state in
the solid phase directly using the X-ray microprobe beamline X26A at
the National Synchrotron Light Source (NSLS; Brookhaven National
Lab., Upton, NY, USA). Samples were prepared for XANES analyses
by placing a small amount of solid material in a;2 mm well in a
Lucite plate and sealing with thick Kapton tape. Plates were then placed
in canning jars and shipped to NSLS. Microfocusing optics were used
to obtain a small X-ray beam. A double elliptical Au- or Rh-coated
Kirkpatrick–Baez mirror system operated at a pitch of 2 mrad was used
to focus a 350mm2 monochromatic beam at the U LIII absorption edge
(17166 eV) down to a 153 20 mm2 beam, resulting in a total flux of
;1010 photons/s (Eng et al., 1995; Smith and Rivers, 1995; Yang et al.,
1995). A Si(Li) energy dispersive detector with an area of 30 mm2, was
mounted at 90° to the beam. The detector was positioned 2 to 3 cm
from the sample and used to monitor and collect U La fluorescence
X-rays. Collection time was determined with a monochromator tuned
10 eV above the U LIII absorption edge and the count rate was observed
with the Si(Li) detector. The count rate was 50 counts/s for the U LIII

edge. This was used to calculate the count time per scan point, which
gave a scan maximum of.6000 counts. Three to eight seconds per
scan point provided adequate counts for the 153 20 mm2 X-ray beam
size. XANES spectra were acquired at 0.3 to 2.5 eV step intervals over

a 130 eV range, which was relative to 17166 eV. Scan limits were 40
eV less than and 90 eV greater than the U LIII absorption edge.
Standards consisted of U(IV)O2(s), metaschoepite and U(VI)-acetate.
The U LIII -XANES edge energies were defined as the height of the
edge step. Edge energy values were calibrated to be 0 eV with a UO2(s)

standard and monitored with UO2(s) before and after each sample. An
increase with respect to the relative XANES energy edge indicates an
increase in the average U oxidation state. A linear relationship has been
shown between the fraction of U(VI) in the solid and relative XANES
energy edge (Bertsch et al., 1994). The spectra were smoothed with the
Savitsky–Golay method (Savitzky and Golay, 1964). Error in the
XANES measurements is610%. One sample from each triplicate was
analyzed by XANES; the standard deviations reported reflect this error
only.

2.7. Thermodynamic Calculations

Effective redox potentials (E9) were calculated for the various elec-
tron transfer reactions directly or indirectly mediated byS. putrefaciens
by using the Nernst equation:

aA 1 bOx1 ne2 5 cC1 dRed (1)

E9 5 E° 2 RT/nF(ln[{C} c{Red}d]/[{A} a{Ox} b] (2)

where E° is the standard-state half-cell potential; {Ox} and {Red} are
thermodynamic activities for oxidized and reduced species; {A} and
{C} are thermodynamic activities for other reaction components (e.g.,
H1, HCO3

2, etc.); and R, T, and F are the gas constant, degrees Kelvin,
and the Faraday constant, respectively. Thermodynamic activities for
aqueous species were calculated by using MINTEQA2 (Allison et al.,
1991) with the best available thermodynamic data compiled by the
authors. Half-cell potentials, complexation constants, and solubility
products for U(IV) and U(VI) species were primarily from Grenthe et
al. (1992b and 1995), while those for the Fe(II, III) system were from
Cornell and Schwertmann (1996); Bruno et al. (1992); and Langmuir
(1997). The half-cell potential (E°) for the lactate to acetate biodegra-
dation reaction was derived from data presented by Morel (1983).

3. RESULT

3.1. Bacterial Reduction of Uranyl Acetate in NaHCO3

and PIPES Buffers

S. putrefaciensCN32 quantitatively reduced 100mM uranyl
acetate, with lactate or H2 as an electron donor (data not
shown), confirming previous results (Lovley et al., 1991). In
both PIPES- and NaHCO3-buffered suspensions, the decrease
in U(VI)aq in CN32 cell suspensions with electron donor (Table
1) was accompanied by the formation of a dark gray to black
precipitate that formed flocs with the bacterial cells. XANES
spectra of the microbially reduced U(VI) flocs revealed a
characteristic shift of the relative LIII edge energy (Fig. 1)
indicative of U(IV) (Bertsch et al., 1994). The same treatments,
but with heat-killed cells or microbially reduced U exposed to
air for 12 h, had edge energies consistent with a predominant
U(VI) oxidation state. The X-ray diffractogram of reduced flocs
(Fig. 2), although exhibiting a relatively high signal-to-noise
ratio and broad diffraction maxima, was consistent with the
d-spacings for uraninite [UO2(s)]. Uraninite was previously
shown to be a product of uranyl acetate reduction by the
dissimilatory iron-reducing bacteriumGeobacter metalliredu-
cens, strain GS-15 (Gorby and Lovley, 1992). The broad dif-
fraction maxima were indicative of the fine-grained character
of the biogenic precipitate.
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3.2. Reduction of Uranyl Acetate in Goethite Suspensions

In suspensions containing 4.5 g/L goethite,S. putrefaciens
CN32 also promoted the reduction of 1 mM uranyl acetate to an
insoluble form in NaHCO3-buffered solution with or without
100 mM AQDS (Fig. 3). U XANES revealed that U in the
microbially reduced solids was predominantly U(IV), whereas
in the unreduced controls it was essentially all U(VI) (e.g., 97%,
Fig. 3).

In these experiments, AQDS was included as a model humic
acid that contains a microbially reducible quinone (Lovley et
al., 1996; Scott et al., 1998). AQDS has been shown to enhance
the rate and extent of microbial reduction of solid Fe(III) oxides
including goethite, hematite and natural crystalline Fe(III) ox-
ides (Zachara et al., 1998). The presence of AQDS resulted in
a smaller fraction of U(IV) in the solids (76 to 84%) than in its
absence (97 to 100%), as determined by U XANES analyses
(Fig. 3), even though the concentration of U(VI)aq was only
slightly above detection in the NaHCO3-buffered solution.

In suspensions with 1 mM lactate and CN32 cells, approx-
imately 10% (5 mM) of the initial goethite was reduced (Fig.
4). In suspensions with 100mM AQDS, the concentration of

HCl-extractable Fe(II) was slightly higher, probably due to
facilitation of electron transfer from the cells to the oxide
surface (Zachara et al., 1998). Neither U nor Fe solid reduction
products were evident upon examination of CN32-reduced U
and goethite suspensions by scanning electron microscopy
(SEM, data not shown). Solid phase reduction products such as
siderite or uraninite were not apparent and diffraction maxima
for either of these phases were not detected by XRD analysis
(not shown). Siderite crystallites from CN32 reduction of
Fe(III) oxides are typically 1 to 5mm in size (Fredrickson et al.,
1998; Zachara et al., 1998) and hence would have been evident
in the SEM analyses. Uraninite formed by microbial reduction
of U(VI) is fine-grained (Gorby and Lovley, 1992) and could be
masked by the goethite.

The extent of Fe(III) reduction, and possibly U in the sus-
pensions with AQDS was likely limited by available electron
donor, 1 mM lactate. The number of moles of electrons from
lactate used to reduce Fe and U by CN32 with or without of
AQDS, were higher (29 to 58%) than the values that would be
predicted from the oxidation of 1 mM lactate to acetate and
CO2. This suggests that lactate was completely consumed by
CN32. This higher number of moles of electrons may be due to
endogenous reserves of energy associated with the fresh cell
cultures.

Table 1. Electron transfer to Fe(III) and U(VI) during lactate respiration byS. putrefaciensCN32.

Composition
Fe(II)
mM

U(IV)a

mm

U(VI)-.U(IV) 1
Fe(III)-.Fe(II)
electrons,mM

Lactate consumed,
mM

Lactate/Fe1 U
ratio

Schoepite, CN32, goethite, 1 mM lactate 2530 340 3200 bdb 3.2
Schoepite, CN32, goethite, 10 mM lactate 2690 860 4410 4.0 1.1
Schoepite, goethite, 1 mM lactate 280 bdb 280 ndd —
Schoepite, CN32, goethite 210 bdb 210 ndd —
Schoepite, CN32, 1 mM lactate nac 830 1660 ndd —
Schoepite, 1 mM lactate nac bdb nac ndd —

a Estimated from U XANES.
b bd 5 below detection.
c na 5 not applicable.
d nd 5 not done.

Fig. 1. Microprobe X-ray absorption near-edge structure (XANES)
spectra of U in microbially reduced suspensions in NaHCO3 buffer
compared to a synthetic uraninite [UO2(s)] standard, microbially re-
duced U after 24 h of exposure to air, and of U(VI) in heat-killed cell
suspensions.

Fig. 2. X-ray diffractogram of solids produced upon microbial re-
duction of U(VI) acetate.

3088 J. K. Fredrickson et al.



In solutions buffered with 30 mM NaHCO3, pH 7, U(VI)
was computed to be present primarily as the carbonate com-
plexes UO2(CO3)3(aq)

42 and UO2(CO3)2(aq)
22 . In comparison, 1

mM uranyl acetate in PIPES buffer, pH 7, exceeded the solu-
bility of metaschoepite indicating potential for precipitation.
The aqueous concentration of U(VI) in equilibrium with met-
aschoepite under these experimental conditions in PIPES buffer
(as determined by calculation) is approximately 1026.5 M.
Uranyl acetate, at concentrations from 50 to 1800mM, was
equilibrated for 14 days in 30 mM, PIPES, pH 7, or NaHCO3

buffers and the aqueous (0.001-mm filtered) U(VI) was mea-
sured. The concentration of U(VI)aq after equilibration in the
NaHCO3 buffer was unchanged (Fig. 5a), and in the PIPES
buffer was less than 125mM after equilibration regardless of
initial U(VI) concentration (Fig. 5a). The computed U(VI)aq

equilibrium speciation in the PIPES buffer was dominated by
the hydroxo complexes UO2OH(aq)

1 or UO2(OH)2(aq)
o . These

results indicate that in the previously described experiments in
PIPES buffer, Figs. 1–3, most of the initial U(VI) concentration
was present as a solid, possibly metaschopeite, and hence, the

phase that the bacteria would have reduced. In equilibrated
suspensions with 50 mM goethite, between 2 and 19%, depend-
ing on the initial U(VI) concentration, of the U(VI)T was
sorbed to the goethite in the NaHCO3 buffer (Fig. 5b). Due to
the potential precipitation of metaschoepite in the PIPES-buff-
ered goethite suspensions, it was not possible to determine with
precision the amount of total U(VI) that may have been sorbed
to goethite.

3.3. Influence of Goethite on the Bacterial Reduction of
Metaschoepite

To further investigate the microbial reduction of solid-phase
U(VI), the reduction of synthetic metaschoepite by CN32 in
PIPES-buffered suspensions with and without goethite was
examined. Without goethite, U(VI) extracted by 100 mM, pH
8.4 NaHCO3 was less than 10% of the initial metaschoepite
concentration in the suspension with CN32 and lactate. In the
absence of cells, 94% of the initial U(VI) was recovered by this
extraction procedure (Fig. 6). The decrease in bicarbonate-
extractable U(VI) was attributed to bacterial reduction of met-
aschoepite to a U(IV) solid. Uranium XANES analyses of
microbially reduced metaschoepite revealed a shift of the rel-
ative XANES energy edge to a lower energy edge (Fig. 7a)

Fig. 3. Reduction of U(VI) acetate byS. putrefaciensCN32 in
NaHCO3 or PIPES buffered suspensions of 50 mMa-FeOOH(s) (Gt)
with 1 mM lactate.

Fig. 4. Reduction of FeOOH(s) (Gt) by S. putrefaciensCN32, as
measured by 0.5 N HCl-extractable Fe(II), in NaHCO3 or PIPES
buffered suspensions of 1 mM uranyl acetate with 1 mM lactate.

Fig. 5. Solubility of U(VI) acetate in suspensions in 30 mM NaHCO3

or PIPES buffer after equilibration for 14 days (a) and sorption isotherm
of U(VI) acetate to 50 mM FeOOH(s) in 30 mM NaHCO3 buffer (b).
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indicative of tetravalent U. Based on this relative edge energy,
74 6 10% of solid was U(IV).

In the metaschoepite suspensions with goethite,,1% of the
initial U(VI) was recovered in the bicarbonate extractions of
suspensions with 1 or 10 mM lactate, whereas.98% was
recovered in the controls that lacked electron donor (lactate) or
cells (Fig. 6). In contrast to metaschoepite suspensions without
goethite, the relative XANES edge energy of the microbially
reduced materials was shifted less in the presence of goethite
and 1 mM lactate (Fig. 7b), and only 22 to 38% of the U in the
solids was U(IV). In spite of this modest reduction of U(VI)
from metaschoepite, remaining U(VI) was recalcitrant to ex-
traction by Na bicarbonate, pH 8.4, or (NH4)2CO3, pH 9. When
lactate was increased to 10 mM, a greater proportion (866 4%)
of the U associated with the solids was U(IV), as determined by
U XANES. TEM analyses of bioreduced goethite–metascho-
epite suspensions revealed acicular goethite particles of ap-
proximately 0.2mm in length (Fig. 8a) and the absence of
obvious solid phase reduction products such as uraninite or
siderite. Energy filter imaging, selective for uranium, in concert
with TEM revealed very fine grained U particles,,10 nm in
diameter, associated in patches with the goethite surfaces (Fig. 8b).

In the metaschoepite–goethite suspensions with CN32 cells
and 1 mM lactate, the 2.5 mM Fe(II) extracted by 0.5 N HCl,
when combined with the reduced U, accounted for 80% of the
possible electrons from lactate respiration (Table 1) (Lovley,
1991). Lactate remaining after microbial reduction had ceased
was below the detection limit indicating that the microorgan-
isms had consumed all of it. The ratio of U(VI)1 Fe(III)
reduced (total electrons) to lactate consumed was 3.2, a value
close to the theoretical stoichiometry. In contrast, only 4 mM
was consumed in the identical experiment where 10 mM lactate
was added and the ratio of U(VI)1 Fe(III) reduced to lactate

consumed was 1:1. This indicates that factors other than elec-
tron donor limitation were responsible for cessation of Fe(III)
and U(VI) reduction by CN32 in suspensions with 10 mM lactate.

The comparative bioreduction of U(VI) in PIPES-buffered
goethite suspensions was intriguing. Two types of experiments
were performed, one in which 1mM U(VI) was added as
dissolved U(VI)-acetate and second where 1mM U(VI) was
added as metaschoepite. Our synthetic preparation yielded
XRD maxima consistent with thed-spacings for metaschoepite
as reported by a number of investigators (e.g., Sowder et al.,
1996). It was relatively fine-grained (;100 nm) and generally
platy or tabular in morphology when viewed by HRTEM (Fig.
9a,b). The metaschoepite-spiked goethite suspension (second
experiment) was considered to be a model of the phase in the
first experiment. It was therefore unexpected when the biore-
ducibility of U(VI) was 97% in the U(VI) acetate-spiked
(Fig. 3) compared to 22 to 38% in the metaschoepite-spiked
goethite suspensions and 75% in the metaschoepite alone
(Fig. 6). This sizable difference implied that chemical nature
of the sorbed or precipitated U(VI) was different in the two
experiments.

Fig. 6. Concentration of aqueous and 100 mM, pH 8.4 Na bicarbon-
ate extractable U(VI) of bioreduced 1 mM metaschoepite [UO3 z 2H2O(s)]
in suspensions with and without 50 mM FeOOH(s) (Gt).

Fig. 7. Uranium XANES of microbially reduced metaschoepite with
1 mM lactate in the absence of FeOOH(s) (a) or in suspensions con-
taining 4.4 g/L FeOOH(s) (b) in NaHCO3 buffer in reference to a
synthetic uraninite [UO2(s)] standard, a control without electron donor
(lactate), and unreduced metaschoepite.
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3.4. Abiotic Interactions of U(VI) with AH 2DS, Fe(II)aq,
and Sorbed Fe(II)

In suspensions containing goethite, AQDS, and U(VI),S.
putrefaciensCN32 may be reducing all electron acceptors: 1)
simultaneously [U(VI), Fe(III), and AQDS], or 2) preferentially
due to differences in solubility, bioavailability, or more favor-
able energetics or kinetic pathways. Because of potential for
electron acceptors to be utilized preferentially, the ability of
AH2DS and reduced Fe species (aqueous and sorbed) to reduce
U(VI) was investigated. AQDS was quantitatively reduced to
AH2DS by CN32, filtered to remove cells and added, at a range
of concentrations, to 1 mM uranyl acetate in 30 mM NaHCO3

buffer, pH 7. The difference between the initial U(VI) concen-
tration and the U(VI) extracted with 100 mM Na bicarbonate,
pH 8.4, after equilibration was approximately equivalent to the
starting AH2DS concentration (Fig. 10). This indicates a quan-
titative reduction of aqueous U(VI) carbonate species by mi-
crobially reduced AQDS. Though the equilibration period for
this experiment was 14 days, formation of a gray to black
precipitate was noted within minutes after mixing the AH2DS

and U(VI). Metaschoepite, at 1 mM in 30 mM, PIPES buffer,
pH 7, was also reduced by 200, 500, and 800mM AH2DS (data
not shown). Analogous to the data in Fig. 7, the U XANES
analysis of solids from experiments with metaschoepite re-
vealed between 23 and 100% of the U associated with the
solids was U(IV).

In contrast to AH2DS, 2 mM Fe(II)aq was a less effective
reductant of uranyl acetate in NaHCO3 buffer, as all of the
U(VI) and Fe(II) was recovered in the aqueous phase (Table 2).
The XANES analyses indicated that some U(VI) (;18 6 9%)
was reduced by Fe(II) in the PIPES buffer (Table 2); consistent
with this result was that a small fraction, 140mM, of the initial
;2 mM Fe(II) that was added was not recovered after equili-
bration (data not shown). When Fe(II) was preadsorbed to the
surface of goethite and equilibrated with uranyl acetate in
PIPES buffer [Fe(II)T 5 3846 13 mmol/L; 61.5mmol Fe(II)/g
goethite], approximately 93, 72, and 20% of the U(VI) acetate
at initial concentrations of 46, 93, and 460mM, respectively
was not extractable with 100 mM, NaHCO3, pH 8.5 (Table 2).
U XANES analyses of solids from the 460mM U indicated that
approximately 24% was U(IV), a value close to the 20% U not
extractable with (NH4)2CO3. Based on Fe(II) sorption iso-

Fig. 8. TEM image of FeOOH(s) particles from bioreduced goethite–
metaschoepite suspensions (a) and energy filtered TEM showing the U
ratio image of the same field as in (b), revealing the localization of U
(arrows) in association with goethite (b).

Fig. 9. Low magnification TEM image of a particle of the synthetic
metaschoepite (a) and high magnification image illustrating the crys-
talline nature of the solid (b).

3091Reduction of U(VI) in goethite (a-FeOOH) suspensions



therms conducted in 10 mM PIPES, pH 7, with this same
goethite, the Fe(II) sorbed to goethite (1.18mmol/m2) was at
approximately 37% of the maximum saturation (3.23mmol/m2;
Zachara et al. 2000).

4. DISCUSSION

4.1. Conceptual Models of Bioreduction

The thermodynamic system investigated is one where elec-
trons, from lactate, are mobilized during microbial respiration
and, ultimately, transferred from the terminal point of the
bacterial electron transport system to extracellular electron
acceptors. In these studies, U(VI), FeOOH, and AQDS are
potential acceptors. Their redox potentials as calculated for the
specific experimental conditions are summarized in Table 3.
The computations assumed pH 7 for the predominant aqueous
[e.g., Fe(aq)

21 , UO2(OH)2(aq)
o , etc.] and solid species [FeOOH(s),

UO3 z 2H2O(s), UO2(s)] that were known or computed to be

present. For example, the oxidation/reduction reaction for fer-
rous iron (Fe21, Reaction 4) was written with Fe(OH)3(s)as the
oxidized species because it, rather than Fe(OH)2 1 or Fe(OH)°3
is the initial Fe21(aq) oxidation product (e.g., Eary and Rai,
1988). Lactate (Reaction 7) was the strongest reductant as
indicated by E9, while UO2(OH)2(aq)

o (Reaction 1) was the
strongest oxidant. Complexation of UO2(aq)

21 by CO3
22 decreases

the oxidation potential of U(VI) (Reactions 2 and 3). The two
Fe couples were more reducing than all those of U(VI) at the
specific pH and component concentrations used for the com-
putation.

The bioreduction experiments with CN32 may, conceptually,
be viewed as electron titration experiments. Bacteria provide
the mechanism to enzymatically liberate electrons as they me-
tabolize lactate. Specific constraints to microbial electron trans-
fer, such as the requirement for direct cell contact with solid
phase electron acceptors (Arnold et al., 1988; Lovley and
Phillips, 1988; Myers and Nealson, 1988) (e.g., FeOOH(s) and
UO3 z 2H2O(s)), must be considered. Microbial consumption of
lactate (Reaction 7, Table 3) decreases the functional pe of the
transfer of electrons to oxidized electron acceptors. Without
kinetic constraints (which often predominate), the most
strongly oxidizing species [e.g., UO2(OH)2(aq)

o ] are expected to
be reduced first, followed by the second [e.g.,
(UO2)2CO3(OH)(aq)

32 ], etc., based on potential free energy
change (e.g., Scott and Morgan, 1990; Zehnder and Stumm,
1988). It may thus be speculated based on arguments of ther-
modynamic feasibility that as lactate is consumed according to
Reaction 7, the remaining reactions in Table 3 would proceed
in sequence, 1, 2, 3–6, with due consideration given to the
concentration of reactive components. However, the exact re-
duction sequence that occurs will be dictated by kinetic factors
and enzymatic pathways and may differ from that predicted on
thermodynamic grounds. Electron transfer between respiring
DMRB and the Fe(III) oxide surface, for example, appears to
be a kinetically slow process, being limited by complex factors
at the organism–oxide interface involving attachment and sur-
face complexation.

Alternatively, the bacteria in these experiments can be
viewed as generating a “constant bio-potential.” In this second

Fig. 10. Concentration of U(VI), initially present as U(VI) acetate in
NaHCO3 buffer, extracted with 100 mM, NaHCO3, pH 8.4, after
equilibration with microbially reduced AQDS (AH2DS) or unreduced
AQDS for 14 days.

Table 2. Reduction of U(VI) acetate by Fe(II)(aq) or Fe(II) sorbed to goethite.

Components
U(VI)aq,

mM
HCO3-U(VI)a,

mM
Estimated amount of
U(VI) reductionb %

2 mM Fe(II)aq, HCO3
2, 1 mM uranyl acetate 1091 (42) — ndc

2 mM Fe(II)aq, PIPES, 1 mM uranyl acetatee 0.01 — 18 (9)d

Fe(II), FeOOH(s), PIPES, 46mM uranyl acetatee,f bd 2.9 (4.9)d ndg

FeOOH(s), PIPES, 46mM uranyl acetatee bd 41.9 (1.9)d ndg

Fe(II), FeOOH(s), PIPES, 93mM uranyl acetatee,f bd 24.6 (18.9)d ndg

FeOOH(s), PIPES, 93mM uranyl acetatee bd 89.1 (3.8)d ndg

Fe(II), FeOOH(s), PIPES, 460mM uranyl acetatee,f bd 380.7 (36.3)d 24 (8.7)d

FeOOH(s), PIPES, 460mM uranyl acetatee bd 473.3 (43.2)d 8 (1.2)d

a Extractable with 100 mM N bicarbonate, pH 8.5.
b As estimated from XANES LIII edge position, analysis requires solid materials.
c No solids formed in this solution.
d Standard deviation.
e Initial U concentration supersaturated with schoepite, precipitation expected and indicated by color change at the higher concentration.
f Total Fe(II) 5 2.973 1024 M, adsorbed (Fe(II)5 67.5 mmol Fe(II)/g goethite.
g UT was too low for XANES analyses.
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model, a constant, low reductive potential develops on the
microbe surface, in conjunction with electron transfer proteins
in the outer membrane (Beliaev and Saffarini, 1998; Myers and
Myers, 1997; Myers and Myers, 1998). The potential may vary
for electron donors because of their chemical potentials, (e.g.,
lactate versus H2), but is manifest in the effective redox poten-
tial of cytochromes or other electron transfer proteins at the
organism surface. For lactate, this potential could range from
between2440 and2400 mV (Table 3, Reaction 7). Midpoint
potentials ofc-type cytochromes from anaerobic bacteria as
low as2400 mV have been measured (Bianco and Haladjian,
1994), although the lowest potential measured for ac3-type
cytochrome inS. putrefaciensis 2233 mV (Tsapin et al.,
1996). Any electron acceptor that has a higher E9 than the
values noted can potentially be reduced by the “constant po-
tential” organism surface. The competition between, or prefer-
ence for, electron acceptors may be explained by two factors:
the species-specific enzyme mediated electron transfer kinetics;
and mass transfer of the electron acceptor to the active site on
the enzyme.

For solids, this situation is complicated by several factors
including organism–surface contact area, spatial location and
“mobility” of competing electron acceptor solids, their solubil-
ity, etc. With a “constant bio-potential” model, CN32 could
reduce FeOOH(s) in presence of metaschoepite, in spite of the
higher oxidation potential of the U(VI)-couple, because the
cells are predominantly associated with goethite surfaces and
develop a surface potential capable of reducing Fe(III) in
goethite. The fact that metaschoepite is present in the system,
some of which may also be in contact with cells, has no direct
impact on Fe(III) reduction. Global equilibrium is achieved, if
indeed such a point is reached at all, by abiotic electron transfer
between kinetically viable redox couples that are in disequilib-
rium [e.g., Fe(II) in various states and U(VI)]. These abiotic
reactions act to bring the redox potential of all other couples in
balance with the organism surface.

4.2. Bioreduction of Uranium

4.2.1. Metaschoepite

This is the first report that we are aware of demonstrating the
direct bacterial reduction of a crystalline U(VI) solid.S. putre-
facienshas a remarkable ability to reduce solid phase metal
oxides and oxyhydroxides with low metal solubility, including
synthetic hydrous ferric oxide (HFO), goethite [a-FeOOH(s)],
hematite [a-Fe2O3(s)], magnetite [Fe3O4(s)], and crystalline
Fe(III) oxides in subsurface sediments (Dong et al., 2000;
Zachara et al., 1998). Although unknown, it is likely that the
same mechanism that allowsS. putrefaciensto reduce Fe(III)
oxides and oxyhydroxides is responsible for their ability to
reduce solid phase U(VI). Whether U(VI) is a soluble species
or associated with a solid phase,S. putrefacienscan reduce it to
insoluble UO2(s) in the absence of competing electron acceptors.

4.2.2. The impacts of goethite

Results of U bioreduction experiments are summarized in
Table 4. Goethite did not impact the ability ofS. putrefaciens
CN32 to promote the reduction of U(VI), originally added as
U(VI) acetate, in either NaHCO3 or PIPES buffers. This was
shown by a decrease in U(VI)aq in the NaHCO3 buffer to below
detection and the presence of predominantly U(IV) solids in
both buffers, as determined by XANES (Fig. 3). In these
suspensions, approximately 10% of the goethite was reduced
(Fig. 4); this value is consistent with previous values (Zachara
et al., 1998).

U(VI) sorbs strongly to Fe(III) oxide surfaces in the absence
of CO3

22 (Duff and Amrhein, 1996; Hsi and Langmuir, 1985;
Waite et al., 1994), and it is plausible that the goethite surface
modified the nature of the U(VI) precipitate from that of
metaschoepite through a surface induced precipitation process.
Perhaps the precipitate existed as microclusters on the goethite
surface that allowed for optimal organism contact. The precip-

Table 3. Reduction potentials of chemical components.

Reaction E°(v) E9(v) Comment

1) 0.5 UO2(OH)°2 (aq) 1 H1 1 e2 5 .5 UO2(s) 1 H2O 0.757 0.139 Simulation of PIPES treatment UT 5 1.0 3 1023 mol/L, saturated
with schoepite giving UT(aq) 5 2.7 3 1027 mol/L and
{UO2(OH)°2 (aq)}

b 5 1.3 3 1027

2) 0.25 (UO2)2CO3(OH)3(aq)
2 1 H1 1 e2 5 0.5 UO2(s)

1 0.75 H2O 1 0.25 HCO3
2

0.576 0.139 Simulation of PIPES bioreduction experiment, CO3 from lactate
metabolism. UT(aq) 5 2.9 3 1025 mol/L fixed by schoepite
solubility. {(UO2)2CO3(OH)3

2} 5 8.8 3 1026; CT 5 5.0 3 1024

mol/L.
3) 0.5 UO2(CO3)3(aq)

42 1 1.5 H1 1 e2 5 0.5 UO2(s)

1 1.5 HCO3
2

0.687 0.078 Simulation of bicarbonate treatment, UT 5 UT(aq) 5 1.0 3 1023 mol/L
unsaturated with schoepite. {UO2(CO3)3

42} b 5 1.5 3 1025;
CT 5 3.053 1022 mol/L

4) Fe(OH)3(s)(fresh)1 3H1 1 e2 5 Fe(aq)
21 1 3H2O 1.064 20.018 {Fe21 5 1.0 3 1023} b

5) FeOOH(S) 1 3H1 1 e2 5 Fe(aq)
21 1 2H2O 0.799 20.088 {Fe21 5 1.0 3 1026} b

6) 0.5 AQDS1 H1 1 e2 5 0.5 AH2DS 0.230 22.40 {AQDS} 5 1.0 3 1026; {AH 2DS} 5 1.0 3 1024

7) 0.125 CH3COO2 1 0.25 HCO3
2 1 1.20 H1

1 e2 5 0.166/La 1 0.50 H2O
0.121 20.410 PIPES buffer, 10 mM initial lactate; 4.0 mM utilized during

bioreduction (e.g., Table 1)
20.396 30 mM bicarbonate buffer, 10 mM initial lactate; 4.0 mM lactate

utilized during bioreduction
20.436 PIPES buffer, 1 mM initial lactate, 0.1 mM lactate utilized
20.403 PIPES buffer, 1 mM initial lactate, 0.95 mM lactate utilized

a L 5 lactate.
b { } 5 activity.
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itate may have been amorphous and, because of the shorter
aging time, exhibited higher solubility (e.g., Bruno and San-
dino, 1989) and ease of reducibility by analogy to Fe(III)
oxides (Roden and Zachara, 1996). The nominal hydroxyl
surface site concentration of the goethite suspensions (4.4 g/L)
was 0.88 mM [based on measurements by (Zachara et al., 2000)
and other reports of goethite surface site density] and it is
possible that 50% or more of the U(VI) spike (1 mM uranyl
acetate) was adsorbed by goethite in the absence of NaHCO3

buffer. Whether a surface precipitate, an adsorbed species, or a
mixture, it is important to note that cells, lactate and uranyl
acetate were added to the goethite suspension at the same time.
Because U(VI) reduction is relatively rapid in the absence of
goethite (0.45mmol/min/L; Y. Gorby, unpublished data), it is
possible that bacterial U(VI) reduction occurred concurrently
with other geochemical reactions (e.g., precipitation).

Goethite did have a significant impact on the reduction of
metaschoepite by CN32 with only 22 to 38% of the U(VI)
being reduced compared to approximately 75% in its absence
(Figs. 7a,b; Table 4). Due to its ability to form strong com-
plexes with U(VI), bicarbonate has often been used to extract
U(VI) from soils and sediments (Duff et al., 1997a,b; Phillips
et al., 1995a). In our experiments, 100 mM, O2-free, NaHCO3,
pH 8.4, or 0.5 mol/L, (NH4)2CO3, pH 9, quantitatively ex-
tracted metaschoepite from abiotic controls with goethite, yet
was ineffective at extracting residual U(VI) from reduced met-
aschoepite, especially in the presence of goethite (Fig. 6). There
are several possible explanations for these observations. First,
the effectiveness of the bicarbonate for extracting U(VI) in the
presence of high concentrations of Fe(II) is unknown. After
microbial reduction, bicarbonate may have complexed some of
the Fe(II) and precipitated as siderite [FeCO3(s)]. Precipitation
of siderite and physical coating of metaschoepite could par-
tially account for the ineffective extraction of U(VI) by bicar-
bonate.

Alternatively, microbial reduction of U(VI) may have lead to
formation of a UO2(s) film or coating on the surface of met-
aschoepite, blocking subsequent reduction by the bacteria and

extraction of U(VI) by bicarbonate. We are unaware of any
reports of the formation of reduced U films on U(VI) solids, but
thin oxidation films (UO21x), promoted by radiolysis products,
have been observed on the surfaces of UO2(s) fuel (Hocking et
al., 1992; Shoesmith et al., 1989) eventually resulting in met-
aschoepite covering the surface (Sunder et al., 1992). Air
oxidation of UO2 fuel at 200°C resulted in complete surface
coverage by relatively large schoepite crystals that were sub-
sequently replaced by small crystals of U3O8 (Taylor et al.,
1991). Peterson et al. (1997) demonstrated that the surface of
magnetite was passivated against further reaction with Cr(VI)
by formation of a surface layer (10 to 20 Å) of maghemite after
the initial reduction of Cr(VI) to Cr(III). In addition to forma-
tion of a UO2(s) film, it is also possible that amorphous
Fe(III)(OH)3(s) (e.g., HFO) may have formed on the surface of
the metaschoepite through reaction with biogenic Fe(II).

Formation of a UO2(s) or HFO film on the metaschoepite
would also account for its incomplete reduction byS. putrefa-
ciens. Lactate became limiting in metaschoepite–goethite sus-
pensions at 1 mM. Differences in U(VI) reduction between 1
and 10 mM lactate treatments may have resulted because HFO,
generated via oxidation of Fe(II) at the metaschoepite surface,
did not accumulate with higher electron donor because lactate
was not limiting (Table 1). The Fe(II) oxidized at the surface of
the metaschoepite could have been reduced by the bacteria until
lactate or other factors limited further bacterial reduction. We
also evaluated another hypothesis that the increase in lactate
concentration from 1 to 10 mM enhanced metaschoepite reduc-
tion by solubilizing U(VI) through aqueous complexation.
Aqueous complexation constants (25°C, I5 0) for UO2

21 with
2-hydroxy propanoic acid (lactate) were found to be log *b1,1

5 3.16 and log *b2,1 5 4.83 (Smith and Martell, 1995).
Through multi-component speciation calculation (MINTEQA2),
we observed that lactate competed poorly with hydroxide for
UO2

21 when the above constants were used. The 10-fold in-
crease of lactate yielded a minimal change in the computed
total aqueous UO2

21 concentration, increasing it from 1.73mM
to 1.78 mM. At 10 mM lacatate, UO2

21-lactate complexes

Table 4. Summary of uranium bioreduction experiments.

Components Presumed U(VI) species/phase
Nominal %

U(VI) reduction
Nominal %

Fe(III) reduction

10 mM lactate (or 10 mL H2), HCO3
2 buffer,

0.1 mM UT as uranyl acetate
UO2(CO3)3(aq)

42 , UO2(CO3)2(aq)
22 a .98 —

10 mM lactate (or 10 mL H2); PIPES,
1 mM UT as uranyl acetate

UO2OH(aq)
1 or UO2(OH)2(aq)

0 ,a unknown solidb .98 —

1 mM lactate, 50 mM goethite, HCO3
2,

1 mM UT as uranyl acetate
UO2(CO3)3(aq)

42 , UO2(CO3)2(aq)
22 a 100 ;10

1 mM lactate, 50 mM goethite, PIPES,
1 mM UT as uranyl acetate

UO2OH(aq)
1 or UO2(OH)2(Aq)

0 ,a unknown solidb 97 ;10

1 mM lactate, 50 mM goethite, 0.1 mM AQDS,
HCO3

2, 1 mM UT as uranyl acetate
UO2(CO3)3(Aq)

42 , UO2(CO3)2(aq)
22 a 84 ;10

1 mM lactate, 50 mM goethite, 0.1 mM AQDS, PIPES,
1 mM UT as uranyl acetate

UO2OH(aq)
1 or UO2(OH)2(aq)

0 ,a unknown solidb 76 ;10

1 mM lactate, PIPES, 1 mM UT as UO3 z HsO(S) Schoepite 83 —
1 mM lactate, 50 mM goethite, PIPES,

1 mM UT as UO3 z H2O(S)

Schoepite 34 ;5

10 mM lactate, 50 mM goethite, PIPES,
1 mM UT as UO3 z H2O(s)

Schoepite 86 ;5

a Predominant computed aqueous species.
b U(VI) may be present as a schoepite-like phase or an adsorbed species.
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represented,3% of UO2(aq)-tot
21 , with the remainder being hy-

doxy complexes. It appears unlikely, therefore that aqueous
complexation caused the noted enhancement in schoepite re-
duction as the lactate concentration was increased.

4.2.3. The influence of AQDS

We have shown previously that AQDS stimulates the rate
and overall extent of dissimilatory Fe(III) reduction when the
electron donor is not limiting, and influences the composition
and crystallinity of biomineralization products (Fredrickson et
al., 1998; Zachara et al., 1998). In suspensions of goethite in
NaHCO3 buffer, for example, siderite was noted as a biomin-
eralization product of reduction byS. putrefacienswhen AQDS
was present but not in its absence. The mechanism by which
AQDS stimulates bacterial Fe(III) oxide reduction has not been
resolved but involves electron shuttling between the organisms
and oxide, enhanced access to solid phase interstices and bio-
logically inaccessible regions, and, possibly, modification of
the bacterial microenvironment.

We expected that AQDS would stimulate both U(VI) and
FeOOH(s) reduction based on previous results, and that AQDS
would have greater effects on solid phase U(VI) reduction
because fine-grained U(VI) precipitates (e.g., Fig. 9) and ad-
sorbed species would be more accessible to a reduced solute of
small dimension. In contrast, we observed that AQDS did not
enhance FeOOH(s) reduction (Table 4), and its presence low-
ered the amount of U(VI) reduction compared to identical
systems without it. This inhibitory effect on U(VI) reduction
was small (e.g., approximately 10%), but discernible whether
U(VI) was present as an aqueous or solid-associated species.
One reason for the differences between these and past pub-
lished experiments was the lactate concentration, which ap-
peared to become limiting in the present experiments with 1
mM lactate. An explanation for the inhibitory effect of AQDS
on U(VI) reduction was not apparent.

4.3. Abiotic Reactions

Alternate electron acceptors, such as FeOOH(s) and AQDS,
were reduced with U(VI) during the microbial oxidation of
lactate over incubation periods of 7 to 14 days, in qualitative
agreement with a “constant bio-potential” model (see Section
4.1). Reduced products of these alternate reactions [e.g., Fe(aq)

21 ,
sorbed Fe(II), and AH2DS], in turn, exhibited thermodynamic
potential to function as abiotic reductants of U(VI) (Table 3)
and their kinetic ability to do so was evaluated in abiotic
experiments (Table 2 and Fig. 10).

Microbially reduced AQDS was a facile reductant of U(VI),
stoichiometrically reducing both aqueous [UO2(CO3)3(aq)

42 , Re-
action 3 in Table 3; Fig. 10] and solid phase U species
[UO3 z 2H2O(s), Reaction 1 in Table 3] to poorly crystalline
uraninite. AH2DS is a strong reductant (Table 3), with E9
considerably lower than that of the U(VI) couples (Table 3).
The high reactivity of AH2DS toward U(VI) in different coor-
dination environments is quite remarkable. AQDS is readily
reduced by DMRB (Fredrickson et al., 1998; Lovley et al.,
1996), indicating ease of engagement with the DMRB electron
transport chain.

Aqueous Fe(II) (2 mM) was ineffective as a reductant of

U(VI) compared to AH2DS (Table 2). The computed E9 of the
iron couple [Fe(OH)3(s)/Fe(aq)

21 ] indicated that Fe(aq)
21 should re-

duce U(VI) in both PIPES (Table 3, Reaction 1) and NaHCO3

buffer (Table 3, Reaction 3) at pH 7, but the driving force for
the latter reaction [with UO2(CO3)3(aq)

42 ] is small. The E9 of the
Fe couple is strongly dependent on pH (e.g.,6 0.018 V/0.1
pH), thus consideration of the actual experimental pH is essen-
tial. Uranium remained fully soluble in the NaHCO3 buffer
[presumably as UO2(CO3)3(aq)

42 ] after equilibration with Fe(aq)
21

(Table 2), implying no reduction to U(IV). Reaction thermo-
dynamics were marginally feasible at the measured pH (E9
values of 0.104 and 0.043 for Reactions 1 and 3, respectively,
at pH 6.7). It is therefore unclear whether the lack of reduction
resulted from kinetic or thermodynamic factors. The compari-
son of pertechnetate (TcO4

2) and chromate (CrO4
22) is illustra-

tive of the potential kinetic complexity. The reduction of both
of these anions by Fe(II)(aq) is thermodynamically favorable,
but only CrO4

2 is appreciably reduced at circumneutral pH (Cui
and Eriksen, 1996; Eary and Rai, 1988). The reduction ineffi-
ciency of Fe(II)(aq) in NaHCO3 buffer did not result from its
complexation (computed to be 27% by CO3

22) or mass loss
through precipitation of siderite [FeCO3(s)] as this phase was
not observed although it may have been present at concentra-
tions too low to detect by XRD.

Partial reduction of metaschoepite by Fe(aq)
21 occurred in

PIPES buffer (8 to 18%, Table 2), consistent with the more
favorable thermodynamics of the reaction 1/4 pair (Table 3).
The heterogeneous reduction of UO3 z 2H2O(s) by Fe(aq)

21 is a
complicated kinetic process involving adsorption [of Fe(aq)

21 ]
and surface precipitation [of Fe(OH)3(s), e.g., Bruno et al.,
1995].

Fe(II) sorbed to goethite promoted greater reduction of pre-
cipitated U(VI) in PIPES buffer than did Fe(aq)

21 , and extent of
reduction was dependent upon the total U(VI) concentration
(Table 2). The total Fe(II) in these suspensions (2.973 1024

M) was intermediate in concentration to U(VI) (Table 2) and
represented 67.5mmol Fe(II)/g of goethite. Sorbed Fe(II) did
not react to completion with U(VI), regardless of U(VI)/Fe(II)
ratio. The thermodynamic feasibility of this reaction is not
known. Stumm cites an EH

o for the Fe(II)/Fe(III) surface com-
plex couple of 0.36V (Stumm, 1992). This EH

o , is relatively
oxidizing and would not lead to the reduction of U(VI) (Table
3). However, Liger at al. (1999) recently reported the reduction
of U(VI) by the Fe(II) complexes, [FeOFe1 and
[FeOFeOH0, on the surface of hematite. The hydroxo com-
plex [FeOFeOH0 was the rate determining reductant species
and the initial rate of U(VI) reduction exhibited a first-order
behavior with respect to sorbed uranyl concentration. Empirical
evidence suggests that sorbed Fe(II) on goethite is a powerful
and kinetically facile reductant (Cui and Eriksen, 1996; Had-
erlein and Pecher, 1999; Klausen et al., 1995; Rugge et al.,
1998) which is consistent with our results. The presence of
separate solid-phase reactants may impose severe mass transfer
limitations on this reaction in our study, limiting the frequency
of reactant contact and their effective concentrations.

5. IMPLICATIONS TO IN SITU U BIOIMMOBILIZATION

S. putrefaciensstrain CN32, isolated from a U-enriched
sandstone, effectively coupled the oxidation of lactate to the
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reduction of U(VI) initially present as either a soluble carbon-
ate complex or as a solid (metaschoepite) or adsorbed phase.
Goethite functioned as a competing acceptor for electrons from
lactate respiration and was partially reduced. It did not, how-
ever, impede the reduction of aqueous U(VI) to insoluble
U(IV). Our experiments with U(VI) and FeOOH(s) do not allow
differentiation of enzymatic versus non-enzymatic U(VI) re-
duction. U(VI) and Fe(III) were reduced concurrently where
high cell densities and large electron donor concentrations were
used to accelerate the bioreduction process. Measurements
were not performed to assess the relative reduction rates of
these two electron acceptors as this issue was beyond the scope
of the current research. What is certain is that reduction of
FeOOH(s) occurred enzymatically byS. putrefaciensas the
Fe(III) oxide is not vulnerable to reduction by U(VI) for rea-
sons of both solubility and thermodynamics. In contrast, goe-
thite prevented the quantitative reduction of metaschoepite and
altered the extractability of residual U(VI) in metaschoepite by
bicarbonate. Metal-reducing bacteria can also potentially re-
duce U(VI) indirectly via the reduction of humic acids (e.g.,
AQDS) and Fe(III). This combination of direct and indirect
microbial reduction can effectively immobilize U(VI) in the
presence of Fe(III) oxides. Such a process may be feasible in
situ, for immobilizing U in initially oxidizing subsurface envi-
ronments.

Although synthetic goethite was used herein, previous re-
search has shown that naturally occurring Fe(III) oxides are
equally or more susceptible to microbial reduction (Zachara et
al., 1998). Those findings, coupled with the potential for indi-
rect reduction via microbial generation of Fe(II), suggests that
metal-reducing bacteria would also promote U reduction and
immobilization in Fe(III) oxide containing subsurface material.
In subsurface environments, contaminant plumes of soluble
U(VI) may be transported into anoxic zones where dissimila-
tory iron reduction is operative. Studies of ferrigenic ground-
waters are limited but those performed generally indicate that:
1) the rates of bacterial reduction being both substrate and
nutrient (e.g., P) limited are slow; and 2) aquifer surfaces are
saturated with sorbed, biogenic Fe(II) from long term in situ
enzymatic reduction of Fe(III) oxides (Heron et al., 1994a).
Under these circumstances, the reduction of U(VI), if it occurs,
may be dominated by reaction with biogenic Fe(II) products
rather than directly by enzymatic activity.
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